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A New Approach for Forecasting Stock Prices using Principal 
Components 

 
Mahsa Ghorbani* and Edwin K. P. Chong** 

 
Stock price prediction is one of the most challenging problems in the 
finance world. In this paper we focus on forecasting stock prices over a 
short period of time using historical price data. Given past data, the 
multivariate conditional mean is used as a point estimator to minimize the 
mean square error of prediction. However, the calculation of the condition 
mean and covariance involves the numerical inverse of an ill-conditioned 
matrix, leading to numerical issues. To overcome this problem, we propose 
a filtering operation based on principle component analysis. Projecting the 
noisy observation onto a principle subspace leads to a significantly better 
numerical condition. We use daily historical price data for General Electric 
Company from 1996 to 2015 to illustrate our method, which shows 
promising results in terms of the estimation performance. 

 
Field/Track:  Finance (Stock Market, Financial Modelling, Quantitative Finance) 
 

1. Introduction 
 
Prediction of stock prices is one of the most widely studied and challenging problems and 
is receiving considerable attention from researchers. The successful forecasting of 
potential stock prices can provide significant profit. We focus on estimating future price 
values based on past data. More specifically, assume we are given the price values for the 
past 90 days, and based on that, we want to estimate the price for the next 10 days. Given 
historical data, multivariate conditional mean is a suitable point estimator because it 
minimizes the mean square error of the estimation. However the numerical results cannot 
always be trusted because estimating future values using this method is often not a well-
conditioned problem. Our main goal is to propose a method with similar forecasting power 
that improves the reliability of the numerical results. We propose a filtering operation on 
the noisy observed data onto a principle subspace using principle component analysis 
(PCA), and we investigate the results based on mean square error of prediction, as a 
measure of performance. We use historical daily stock prices of General Electric from 
1996 to 2015 to illustrate our method. 
 

2. Literature Review  
 
Technical traders base their analysis on the promise that the patterns in market prices are 
assumed to recur in the future, and thus these patterns can be used for predictive 
purposes(Gencay 1998). Studies show fundamental variables such as earnings yield, cash 
flow yield, size and book to market ratio (Chen, Leung and Daouk 2003; Fama and French  
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1992), and macroeconomic factors such as interest rates, expected inflation and dividend 
have some power to predict stock returns (Fama and French 1986; Fama and French 
1988).The literature proposes strong evidence that price can also be predicted from past 
price/return data as well as other fundamental or macroeconomic variables. Some studies 
found significant auto-correlation for daily and weekly returns (Lo and MacKinlay 1988; 
French and Roll 1986), others demonstrate correlation over the horizon of several months 
or years (Cutler, Poterba and Summers 1991; Fama and French 1986). 
 
Principal component analysis (PCA) is a well-established mathematical procedure for 
dimensionality reduction and has wide applications across various fields such as time-
series prediction (Hotelling 1933), pattern recognition, feature extraction, data 
compression, and visualization (Jolliffe 2002). In the field of quantitative finance, PCA has 
relevance in exploring financial time series (Incea and Trafalisb 2007), dynamic trading 
strategies (Fung and Hsieh 1997), financial risk computations (Alexander 2009;Fung and 
Hsieh 1997;Jain, Bakshi and Kalele 2015), and statistical arbitrage (Shukla and Trzcinka 
1990). In this work, we employ PCA in forecasting stock prices. 
 
Subspace filtering methods are based on the orthogonal decomposition of the noisy data 
space onto a signal subspace and a noise subspace. This decomposition is possible under 
the assumption of a low-rank model for the data, and on the availability of an estimate of 
the noise correlation matrix (Hermus, Wambacq and van Hamme 2007). This task can be 
done based on a modified singular value decomposition (SVD) of data matrices (Tufts, 
Kumaresan and Kirsteins 1982). The orthogonal decomposition into frame-dependent 
signal and noise subspace can be performed by an SVD of the noisy signal observation 
matrix or equivalently by an eigenvalue decomposition of the noisy signal correlation 
matrix (Hermus, Wambacq and van Hamme 2007). 
 
Mean square error (MSE) is considered an appropriate metric to measure the performance 
of predictive tools (Gencay 1998; Fama and French 1988), which is the average squared 
difference between the actual and predicted price value. Given historical data, assuming 
normality, one efficient way to estimate future prices, is by simply using the multivariate 
conditional mean as the point estimator, because it minimizes the mean square error of 
the estimate (Scharf 1991). The numerical problem that occurs in most cases, is that the 
proposed estimator requires calculating the inverse of the covariance matrix of the 
observed data. Because this matrix is often ill conditioned, meaning its condition number is 
very large, calculation of its inverse can lead to significant numerical errors. We propose 
and implement a dimensionality reduction method to resolve this issue. 
 
In this paper we focus on forecasting stock price from daily historical price data. Our 
method shows great potential for investigating the relevance of other fundamental and 
macroeconomic variables in price predictability as well. 
 

3. The Methodology  
3.1. General setting 
 

Suppose that we have K  samples of vector data, each of length N , where N K< . Call 

these vectors
1 2
, ,..., Kx x x , where each ( 1,..., )

N

ix R i K∈ =  is a vector of length N ,  

[ ]1 2
.

i i i iN
x x x x= L          [1] 
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We assume that the vectors 
1 2
, , , Kx x x…  are drawn from the same underlying distribution. 

Let M N≤  and suppose the first M  data points of vector ix  represent the end-of-day 

prices of a company stock over the past M  consecutive trading days. The overall goal is 
to predict the next 1M + to N  data points, which is company stock prices over the next 

N M−  trading days using the observed values of the past consecutive M  days. 
 
3.2. Normalizing and Centering the Data 
 

In the case of stock-price data, the vectors
1 2
, , , Kx x x… , might come from prices spanning 

several years or more. If so, the basic assumption that they are drawn from the same 
distribution may not hold because stock prices have changed over time. Even the value of 
a US dollar has changed over time, as a result of inflation. To overcome this issue, a 
scaling approach should be used to meaningfully normalize the prices. One such approach 

is presented here. Suppose that [ (1), (2), , ( )]
i i i i

t t t t N ′= …  is a vector of stock prices centered 

as described above, over N  consecutive trading days. Suppose that Q N≤  is also given. 

Then we apply the following normalization to obtain
ix :  

.
( )

i
i

i

t
x

t Q
=            [2] 

This normalization has the interpretation that the ix  vector contains stock prices as a 

fraction of the value on the Q th day, and is meaningful if we believe that the pattern of 

such fractions over the days 1, , N…  are drawn from the same distribution. Note that

( ) 1ix Q = .  

For the purpose of applying our method based on PCA, we assume that the vectors 

1 2
, , , Kx x x…  are drawn from the same underlying distribution and that the mean, x , is equal 

to zero. However because ix  represents price values, in general the mean is not zero. The 

mean x  can be estimated by averaging ( 1,..., )
N

ix R i K∈ = , 

1

1
,

K

i

i

x x
K =

= ∑            [3] 

and then this average vector is deducted from each ix  to center the data. For 

convenience, in the following, we use the notation ix  for normalized and centered data. 

 
3.3. Estimation Techniques 
 
As mentioned before, we have K  samples of vector data, each of length N , where N K< :

1 2
, ,..., Kx x x , where each ( 1,..., )

N

ix R i K∈ =  is a vector of length N . We can stack these 

vectors together as rows of a K N×  matrix:  

11 12 1

21 22 2

1 2

.

N

N

K K KN

x x x

x x x
X

x x x

 
 
 =
 
 
 

L

L

L L L L

L
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Let M N≤  and suppose that we are given a vector M
y R∈  representing the first M  data 

points of a vector we believe is drawn from the same distribution as
1 2
, , , Kx x x… . Again, 

these M  data points represent the end-of-day prices of a company stock over the past M  
consecutive trading days. Let z  be the price of the next N M−  days in the future. We wish 
to estimate z  from y . 

 
A. Gauss-Bayes or Conditional Estimation of z  given y  

 

The vector ix  is a multivariate random vector and can be partitioned in the form

[ ],
i i i

x y z= where iy  has length M  and iz  has length N M− . 

Accordingly the data matrix X  can be divided into two sub-matrices Y  and Z  as follow:  

[ ] [ ].X Y Z=   [4] 

We can think of Y  as a data matrix consisting of samples of historical data, and Z  as a 
data matrix consisting of the true future values of prices. The covariance matrix for the 
data can be written as 

.
yy yz

xx

zy zz

Σ Σ 
Σ =  

Σ Σ 
          [5] 

Assuming that y  and z  are jointly normally distributed, knowing the prior distribution of

[ , ]x y z= , the Bayesian posterior distribution of z  given y  is given by 
1

1

ˆ

ˆ ,

 zy yyz y

zz zy yy yzz y

z y
−

−

= Σ Σ

Σ = Σ − Σ Σ Σ

∣

∣

         [6] 

The ˆ
z y

Σ
∣

 matrix is also called the Schur complement of 
yyΣ  in xxΣ . Note that the posterior 

variance does not depend on the specific value of y . The Gauss-Bayes estimator, the 

conditional mean, minimizes the mean square error (Scharf 1991). The same set of 
equations can be obtainedin development of Kalman filtering. Kalman’s own view of this 
approach is a complete deterministic operation (Byrnes, Lindquist and Zhou 1994), and 
not computing the Gaussian posterior distribution, which means the normality assumption 

is not mandatory. Although the point estimator ˆ
z y

z
∣

  is optimal in term of MSE, in practice 

there are numerical complications involved in this method: The matrix of  
yyΣ  is not well 

conditioned, so the numerical calculation of 1

yy

−Σ  cannot always be trusted. To overcome 

this problem, we propose a better conditioned estimator, which has a behavior close to 
Guess-Bayes.  

 
B. Principal Components and Estimation in Lower Dimension 

 
Principal component analysis (PCA) is a well-established mathematical procedure for 
dimensionality reduction of the data and has wide applications across various fields. In this 
work, we consider its application in forecasting stock prices. PCA involves calculating the 
eigenvalue decomposition of the covariance matrix of the data or equivalently singular 
value decomposition (SVD) of the matrix of data. Consider the SVD of X : 

,X USV ′=            [7] 
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where S  is a diagonal matrix of the same dimension as X  with non-negative diagonal 

elements in decreasing order, and U  and V  are unitary matrices ( T

KUU I=  and T

NVV I=

). The square of diagonal elements of S  are called eigenvalues.Equivalently, the SVD of 
the covariance matrix of data can be considered. A little bit of algebra shows that 

2
1 1

( ) ( )
1 1 1

xx

S
X X USV USV V V

K K K

′′ ′ ′Σ = = =
− − −

.    [8] 

Hence the matrix of eigenvectors V  for the covariance matrix are the same as the singular 
vectors from SVD for the data matrix, and the eigenvalues generated in this case are just 
the squares of the singular values from the first SVD. From now on we focus on SVD of 
covariance matrix. In general, the first few eigenvalues account for the bulk of the sum of 
all singular values. The eigenvectors with the greatest eigenvalues are called the principal 
components. 
Let L N<  be such that the first L  singular values in S  account for the bulk part (say 85% 

or more) of the sum of the singular values. Let 
LV  be the first L  column of unitary matrix V  

in the SVD of X . Let A S U′ ′= , so the i th column of X is i ix Va= , and let vector L

i
Rα ∈  be 

the first L  components of
ia . Then each 

ix  is approximately equal to the linear 

combination of the first L  columns ofV : 

.i L ix V α≈            [9] 

Because L  is a small number compared to N , equation (9) suggests that a less noisy 

subspace with a lower dimension can represent most of the information in X . Projecting 

onto this principle subspace can resolve the ill-conditioned problem of
yyΣ . The idea is that 

instead of using all eigenvalues, which vary greatly in magnitude, we use a subset which 
only includes the big ones, and therefore has a smaller range of eigenvalues. The same 
concept is implemented in signal subspace filtering methods, which are based on the 
orthogonal decomposition of noisy speech observation space onto a signal subspace and 

a noise subspace (Hermus, Wambacq and van Hamme 2007). Let 
,M LV  be the first M  

rows and first L  columns ofV . We have 

,
NoiseM Ly V α= + .          [10] 

Mathematically resolving noisy observation vector y  onto the principle subspace can be 

written as a filtering operation in the form of  
,w Gy=            [11] 

where G  is given by 
' 1 '

, , ,
( )

M L M L M L
G V V V−=          [12] 

The vector w  is actually calculating the coordinates of the orthogonal projection. 
Substituting y  by w  in (6) leads to a better conditioned set of equations, 

1

1

ˆ

ˆ ,

 zw wwz w

zz zw ww wzz w

z w
−

−

= Σ Σ

Σ = Σ − Σ Σ Σ

∣

∣

         [13] 

because the condition number of wwΣ  is much lower than that of 
yyΣ  as we will see later. 

In (13) we have: 
' '

zw zyE zw G Σ = = Σ  ,         [14] 

and 
' '

ww yyE ww G G Σ = = Σ           [15] 
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If the posterior distribution of z  estimated based on (13) has a similar behavior to the 
distribution estimated by (6), it can be considered a good substitute for the Gauss-Bayes 
method. Our simulation demonstrates promising results, which will be presented in the 
following sections. 
 

C. Unconditional Estimation of Normalized Data 
 

Recall that N M

iz R
−

∈  represents the last  N M−  points of the 
ix  vector, which are the 

historical sample stock price values. The sample mean and covariance matrix for sub-

matrix z  are unbiased estimators of the mean and covariance of the random vector iz , and 

therefore can be used as an estimate for future price values, albeit one that ignores y. We 
have: 

Uncon

1

'

Uncon

1
ˆ

1ˆ ( ),
1

K

i

i

z z
K

Z Z
K

=

=

Σ =
−

∑
          [16] 

where 
Uncon

ẑ  is the sample mean and 
Uncon

Σ̂  is the sample covariance of z .It is important to 

notice that these statistics are different from sample mean and covariance of the original 
price data because we are applying the formulas above to the normalized and centered 
data.  
We run the simulation for the dimension-reduction method to estimate the stock prices 
over the next N M−  days and the results are compared to Gauss-Bayes method. The 
unconditional estimation results are also included for comparison. 
 
3.4. Performance Metric 

 
To compare the performance of these methods we evaluate the expected value of squared 
error between the real and estimated values. The mean squared error over all different 
observations is formulated as 

2 2 2ˆ ˆ ˆ2MSE E z z E z E z E z z      ′ = − = + −      
     [17] 

In each case, the MSE formula is updated by substituting ẑ  by the corresponding point 
estimator. The Gauss-Bayes estimator is unbiased and in fact the covariance matrix in this 
method provides the lower limit on the MSE for all unbiased estimators.  
 

4. Experiments 
 
The daily historical price data from 1996 to 2015 for General Electric Company was 
downloaded from finance.yahoo.com. This data set is transformed into a Hankel matrix 
and then centered and normalized to construct the data matrices, as described earlier. In 
this paper we focus on short-term prediction, meaning just a few days. We compare the 
estimation values from each technique in terms of MSE. 
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4.1. Constructing Data Matrix  
 
Our data is transformed into a Hankel matrix with K  rows, samples of vector data, each of 
length N . We get that by stocking K  rows ( K  samples), each one time shifted from the 
previous one, all in one big matrix, called the Hankel matrix. 

More precisely, the Hankel matrix 
xH  for this problem is constructed from the vector, 

ix , 

formed in the following format: 
 

1

2

(1) (2) ( )

(2) (3) ( 1)

( ) ( 1 1)

.

) (
K

P P P N

P P P N

P K P K P K

x

N

x

x

   


+

+ + −

  
   =
   
   

  

L

L

L

L L L L

L

  

 
where ( )P N  represents the price for day N . This is our matrix of data, X . Then the 

sample covariance matrix is calculated as / ( 1)
T

xx x xH H NΣ = − . 

 
End-of-day stock prices for General Electric Company for about 5000 consecutive days 
are converted into Hankel matrices with different lengths. We vary M  from 20 to 740, with 
a 30 day interval, to investigate the effect of length of observation vector on the results, 
which means 25 sets of data are evaluated in this study.  
 
As explained earlier, we first normalize each row by ( )y Q  and then subtract the average 

vector x  from each row. After running the simulation, to make use of the predicted values, 

we should add back the average vector N Mx −  (last N M−  components of x ) from days 

1M +  through N  and also multiply the result by ( )y Q  to get back to actual stock prices. 

Different values for Q  have been tested in terms of MSE. For the purpose of this study, 

Q M=  has been chosen because we believe it shows the best results in this setting. Note 

that ( ) 1ix Q = . This column is removed from the data matrix because it does not provide 

any information. From now on matrix X  represents normalized price data. In each case, 
the average of the data set is deducted from each observation to center the data. 
 
The histogram of normalized data is graphed as a representation of the distribution of 
data. Figure 1 represent the first predictor (first column) in matrix X , and the plot 
resembles a bell shape. 
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4.2. Simulation 
 
For each of the data sets constructed above, we implement three different techniques of 
estimation for the next 10 days (day 
prediction. Assume we are given the price values for the past 20 days, and we want to use 
those values to predict the future prices over the next 10 business days, from day 
day N . In our dimension-reduction technique, we can get a very smooth plot for a relatively 

small L , to a plot almost the same as Gauss
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For each of the data sets constructed above, we implement three different techniques of 
estimation for the next 10 days (day 1M +  to N ). Figure 2 shows an example of our stock 
prediction. Assume we are given the price values for the past 20 days, and we want to use 
those values to predict the future prices over the next 10 business days, from day 

reduction technique, we can get a very smooth plot for a relatively 

, to a plot almost the same as Gauss-Bayes, for bigger values of L . 
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historical data in normalized domain 

 

For each of the data sets constructed above, we implement three different techniques of 
shows an example of our stock 

prediction. Assume we are given the price values for the past 20 days, and we want to use 
those values to predict the future prices over the next 10 business days, from day 1M +  to 

reduction technique, we can get a very smooth plot for a relatively 
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Figure 2: Predicting price for the next 10 days using historical data, M=20, N=30, L=2 
andL=11. 

 
 
The general goal, as mentioned above, is an estimation technique that has a similar 
behavior as Gauss-Bayes but does not have the associated calculation difficulties resulting 
from ill-conditioning. As mentioned before, mean squared error (MSE) is a common and 
appropriate measure of performance. We implement our dimension-reduction technique 
for different M s, and for different numbers of principal eigenvalues, L .  
 
Figure 3 shows the values of MSE over all days of estimation versus value of L in the 
normalized domain, for 25 different lengths of observation vector M , from 20 to 740. It 
turns out that MSE value is not that sensitive to the value of L  for sufficiently large L . As 
we can see, initially, the MSE values fall quickly for small values of L , but then remain 
relatively constant, so if we have a particular constraint on condition number, we do not 
lose that much in terms of MSE by choosing a lower dimension subspace, which leads to a 
better conditioned problem. 
 
We are interested in the sum of MSE values over all days of estimation as shown in Figure 
4. The figure illustrates the sum of MSE over all days, subject to an upper limit on 

condition number of
wwΣ . There is a trade-off between M , length of observation vector, and 

value of MSE. In general by increasing M , more information is available in each 
observation, resulting in better performance of the estimation. For each length of M , the 

values for MSE are investigated based on condition number of wwΣ . The top plot in Figure 

4 corresponds to the MSE values corresponding to the Unconditional method. The last plot 
on the bottom corresponds to Gauess-Bayes MSE values, which indicates the optimal 
performance. The other 4 plots correspond to our dimension-reduction method, subject to 

4 different upper limits on 
wwΣ  condition number, from 3

10  to 6
10 .   
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Figure 3: MSE versus L  in the normalized domain for different lengths of 

observation vector 

 
 

Figure 4: Best MSE subject to different upper limits on condition number of 
wwΣ  

 
 
The performance of the lower-dimension estimation method is close to Gauss-Bayes in 
terms of MSE up to a certain point for all different limits of condition number. After 

200M = , or in other words after roughly 7 months, the values from lower rank methods 
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start deviating from Gauss-Bayes in some cases. The second line on top is the best 

performance of lower dimension method subject to condition number of wwΣ  being less 

than 3
10  which is about 1000 times better than the condition number of

yyΣ . However, in 

this it case seems like that after 360M = , the performance of lower rank estimator starts 
deteriorating. At this point, theerror in the proposed algorithm starts diminishing the 
predictor power. When we fix some constraint on condition number, we are actually 
limiting the value of L , and by increasing M , after a certain point, we mostly increase the 
noise, and the MSE value gets worse. As a result if we really do have a constraint on 
condition number, we need to pick a value of M  that is appropriate. 
 

Moving on to the next plot, which is corresponding to the 4
10  limit, the MSE value is almost 

decreasing for all different values of M . In this case, where the condition number is about 
100 times better than Gauess-Bayes, the MSE values are very close in both techniques. 
As we can see, in trading off between MSE for condition number, there is little detriment in 
MSE values. 
 
Investigating the dimension of the target subspace provides a better understanding of how 
the method works. Remember L  represents the number of eigenvalues required from 
diagonal matrix S  to represent the bulk part of the information. Value of L  corresponding 

to best MSE for different M s, subject to different limits on condition number, is plotted in 
Figure 5.As the upper limit on condition number increases, the value of MSE improves as 
M  increases, and we need a bigger subspace, bigger L , to extract the information. 
However, as you can see in the first three plots in Figure 5, the value for best L  is almost 
constant after a certain point, which is consistent with Figure 3.Since L  is in fact the 
dimension of our principal subspace, you can see how using the lower dimension 
algorithms decreases the dimensions of calculations, which leads to a better conditioned 
problem. 
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Figure 5:  Best L  subject to different upper limits on condition number of 
wwΣ  

 
5. Conclusion 
 
In this paper, we described a general method for prediction using covariance information. 
We illustrated our method on daily stock price values for General Electric Company. The 
daily historical price data from 1996 to 2015 was transformed into Hankel matrices of 25 
different lengths to investigate the impact of length of observation on estimation power. 
Each data matrix is then normalized for running the simulation. The multivariate conditional 
mean is known to minimize the mean square error and therefore is used as a suitable 
unbiasedestimator of future values; however, the numerical results from this method 
cannot be trusted because the resulting covariance matrix is not well conditioned. We 
proposeda filtering operation using principle component analysis to overcome this issue. 
Resolving theobserved data set onto a principle subspace reduces the dimensionality of 
the problem and in this case study, improves the condition number of the problem by 
orders of magnitude. The proposed method shows similar behavior to the multivariate 
conditional mean in terms of mean square error of the estimation (provided the imposed 
constraint on condition number is not excessively stringent) in a specific range for length of 
observation and therefore is considered a good substitute for that method.  The proposed 
method is easily implemented and can be modified to include multiple predictors, including 
macroeconomic factors such as interest rates, expected inflation, or fundamental variables 
such as earnings yield, cash flow yield, and market capitalization. The significance of the 
proposed approach will be even more appreciated in estimating the future price values 
using multiple predictors because in that case, where observation vectors are mostly 
longer than the one in this study, it becomes almost impossible to rely on Gauss-Bayes 
due to the severe ill-conditioning of the covariance matrix. 
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